44 research outputs found

    Text-based Spatial and Temporal Visualizations and their Applications in Visual Analytics

    Get PDF
    Textual labels are an essential part of most visualizations used in practice. However, these textual labels are mainly used to annotate other visualizations rather than being a central part of the visualization. Visualization researchers in areas like cartography and geovisualization have studied the combination of graphical features and textual labels to generate map based visualizations, but textual labels alone are not the primary focus in these representations. The idea of using symbols in visual representations and their interpretation as a quantity is gaining more traction. These types of representations are not only aesthetically appealing but also present new possibilities of encoding data. Such scenarios regularly arise while designing visual representations, where designers have to investigate feasibility of encoding information using symbols alone especially textual labels but the lack of readily available automated tools, and design guidelines makes it prohibitively expensive to experiment with such visualization designs. In order to address such challenges, this thesis presents the design and development of visual representations consisting entirely of text. These visual representations open up the possibility of encoding different types of spatial and temporal datasets. We report our results through two novel visualizations: typographic maps and text-based TextRiver visualization. Typographic maps merge text and spatial data into a visual representation where text alone forms the graphical features, mimicking the practices of human map makers. We also introduce methods to combine our automatic typographic maps technique with spatial datasets to generate thema-typographic maps where the properties of individual characters in the map are modified based on the underlying spatial data. Our TextRiver visualization is composed of collection of stream-like shapes consisting entirely of text where each stream represents thematic strength variations over time within a corpus. Such visualization enables additional ways to encode information contained in temporal datasets by modifying text attributes. We also conducted a usability evaluation to assess the potential value of our text-based TextRiver design

    VAST 2014, Challenge One: Event Analysis Within Big Data

    Get PDF
    News articles and email conversation data could be very useful in the analysis of developing and ongoing events, such as preventing a potential threat or possibly even locating a missing person. There is currently no “one-size-fits-all” solution to visualizing diverse forms of datasets and their sheer sizes are far too great to efficiently analyze by brute force methods. However, using principles of Visual Analytics, it is possible to take this information overload and transform it into a useful tool to help increase the efficiency of event analysis. A visualization system was developed for email conversation networks using web technologies. An interactive force diagram was constructed, allowing for an easy analysis of communication links between people. This force diagram was able to be filtered down to specific people or emails and with color coded nodes based on positions held in a company. A dynamic list of email headers was created that allowed for filtering based on specifically chosen people or by user defined importance. Lastly, a slide-out menu was implemented to allow for a side by side comparison between two selected people by displaying their employee records. The system created was used on a data set from the VAST 2014 mini challenge 1 and it allowed for the successful analysis of a fictional companies email network. Although this specific system was designed around the VAST 2014 data set, it could easily be modified to work with diverse email conversation network data to aid in various forms of analysis

    Route Packing: Geospatially-Accurate Visualization of Route Networks

    Get PDF
    We present route packing}, a novel (geo)visualization technique for displaying several routes simultaneously on a geographic map while preserving the geospatial layout, identity, directionality, and volume of individual routes. The technique collects variable-width route lines side by side while minimizing crossings, encodes them with categorical colors, and decorates them with glyphs to show their directions. Furthermore, nodes representing sources and sinks use glyphs to indicate whether routes stop at the node or merely pass through it. We conducted a crowd-sourced user study investigating route tracing performance with road networks visualized using our route packing technique. Our findings highlight the visual parameters under which the technique yields optimal performance

    A Multi-Scale Correlative Approach for Crowd-Sourced Multi-Variate Spatiotemporal Data

    Get PDF
    With the increase in community-contributed data availability, citizens and analysts are interested in identifying patterns, trends and correlation within these datasets. Various levels of aggregation are often applied to interpret such large data schemes. Identifying the proper scales of aggregation is a non-trivial task in this exploratory data analysis process. In this paper, we present an integrated visual analytics environment that facilitates the exploration of multivariate categorical spatiotemporal data at multiple spatial scales of aggregation, focusing on citizen-contributed data. We propose a compact visual correlation representation by embedding various statistical measures across different spatial regions to enable users to explore correlations between multiple data categories across different spatial scales. The system provides several scale-sensitive spatial partitioning strategies to examine the sensitivity of correlations at varying spatial extents. To demonstrate the capabilities of our system, we provide several usage scenarios from various domains including citizen-contributed social media (soundscape ecology) data

    Mass media and the contagion of fear: The case of Ebola in America

    Get PDF
    Background: In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as digital epidemiology ), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends. Methodology: We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data. Conclusions: We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model. © 2015 Towers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(1), (2021): E99-E122, https://doi.org/10.1175/BAMS-D-19-0005.1.The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.The development of the Red Sea modeling system is being supported by the Virtual Red Sea Initiative and the Competitive Research Grants (CRG) program from the Office of Sponsored Research at KAUST, Saudi Aramco Company through the Saudi ARAMCO Marine Environmental Center at KAUST, and by funds from KAEC, NEOM, and RSP through Beacon Development Company at KAUST

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Text-Based Spatial and Temporal Visualizations and Their Applications in Visual Analytics

    Get PDF
    Textual labels are an essential part of most visualizations used in practice. However, these textual labels are mainly used to annotate other visualizations rather than being a central part of the visualization. Visualization researchers in areas like cartography and geovisualization have studied the combination of graphical features and textual labels to generate map based visualizations, but textual labels alone are not the primary focus in these representations. The idea of using symbols in visual representations and their interpretation as a quantity is gaining more traction. These types of representations are not only aesthetically appealing but also present new possibilities of encoding data. Such scenarios regularly arise while designing visual representations, where designers have to investigate feasibility of encoding information using symbols alone especially textual labels but the lack of readily available automated tools, and design guidelines makes it prohibitively expensive to experiment with such visualization designs. In order to address such challenges, this thesis presents the design and development of visual representations consisting entirely of text. These visual representations open up the possibility of encoding different types of spatial and temporal datasets. We report our results through two novel visualizations: typographic maps and text-based TextRiver visualization. Typographic maps merge text and spatial data into a visual representation where text alone forms the graphical features, mimicking the practices of human map makers. We also introduce methods to combine our automatic typographic maps technique with spatial datasets to generate thema-typographic maps where the properties of individual characters in the map are modified based on the underlying spatial data. Our TextRiver visualization is composed of collection of stream-like shapes consisting entirely of text where each stream represents thematic strength variations over time within a corpus. Such visualization enables additional ways to encode information contained in temporal datasets by modifying text attributes. We also conducted a usability evaluation to assess the potential value of our text-based TextRiver design

    Potential Risk of Cross-Infection by Tourniquets: A Need for Effective Control Practices in Pakistan

    No full text
    Background: Tourniquets used repeatedly on patients for blood sampling are a potential source of nosocomial infections. They harbor numerous microorganisms, including methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to investigate tourniquets for the presence of microorganisms and to ascertain the infection control practices of health care workers. Methods: A cross-sectional study was carried out in 2012 on 100 samples of tourniquets collected from public and private sector hospitals in Karachi, Pakistan. The samples were cultured, and pathogenic microorganisms were identified and tested for methicillin resistance. A questionnaire was administered simultaneously to 100 health care workers who had used the tourniquets. Descriptive data are represented as frequencies and percentages. Ethical considerations were taken into account. Results: The total colonization rate was 51%, with no bacterial growth in 17/40 and 32/60 samples from public and private sector hospitals, respectively. S. aureus was isolated from 12 (42%) private sector hospital samples and 10 (43%) public sector hospital samples. Although MRSA was found in more samples from public than private sector hospitals, the difference was not statistically significant. Nevertheless, 90% of all elastic and 41% of all rubber tourniquets harbored microorganisms (P < 0.001). Although 96% of health care workers agreed that hospital staff and fomites can transmit infection, none identified tourniquets as a potential source. When asked whether tourniquets appeared clean before use, 66% agreed, and only 25% considered that tourniquets should be washed or cleaned before use. Conclusions: Tourniquets are a potential reservoir and vehicle for the spread of nosocomial infections, including MRSA. Health care workers have inadequate knowledge about infection control procedures and personal hygiene for disinfecting reusable items
    corecore